
CS331: Algorithms and Complexity
Part IV: Greedy Algorithms

Kevin Tian

1 Introduction
In Part III of the notes, we saw how DP could be a powerful tool in algorithms requiring repeated
decisions. For example, in the unbounded knapsack problem (Section 3.3, Part III), we were given
the weights W and values V of n items, as well as a budget B. The problem required us to find
the count vector c ∈ Zn≥0 maximizing the total item value, i.e.,

∑
i∈[n] ciV [i], while staying within

the budget, i.e.,
∑
i∈[n] ciW [i] ≤ B. Our strategy was to use DP to decide which items to take, by

considering O(n) candidate subproblems at each step and using the best option recursively, taking
care to memoize solutions. This gave an O(nB)-time algorithm overall.

This seems like a lot of work for a problem which admits a very intuitive heuristic: simply choose
the most valuable item every time. However, using this heuristic can get us into trouble for the
unbounded knapsack problem, since earlier decisions can later limit our options. For example, if
W = {1, 3}, V = {2, 3}, and B = 4, choosing items in order of their value does not optimally solve
the problem: we can achieve a value of 8 by taking the first item four times (as W [1] = 1), whereas
taking the second, more valuable, item even a single time limits our achievable value at 5. You
might complain, the first item is “obviously” better than the second: while it is less valuable, it is
more valuable per unit of weight. This suggests choosing items ordered by their value density V [i]

W [i] ,
taking the most value-dense item first. This is also not optimal: if W = {2, 3}, V = {4, 7}, and
B = 4, the second item is more value-dense (73 >

4
2), but taking it limits our maximum achievable

value to 7, whereas obtaining value 8 (by taking the first item twice) is optimal.

Fortunately, under a slight modification to unbounded knapsack, our heuristic succeeds: allowing
for fractional counts. Here, we imagine each item is a divisible liquid, so we can take e.g., 1.5 units
of an item. Formally, in the fractional unbounded knapsack problem, the setting is the same as
unbounded knapsack, except we allow for fractional c ∈ Rn≥0, rather than forcing c ∈ Zn≥0. Our
goal is to compute the maximum possible value

∑
i∈[n] ciV [i] subject to

∑
i∈[n] ciW [i] ≤ B. We

claim that the following simple O(n)-time algorithm solves this problem optimally.

Algorithm 1: FracUnboundedKnapsack(W,V,B)

1 Input: W,V , two Array instances containing n numbers in R>0, B > 0

2 i? ← argmaxi∈[n]
V [i]
W [i]

3 return V [i?] · B
W [i?]

Algorithm 1 says to take only the most value-dense item. It is a greedy algorithm: an algorithm
which makes its decisions according to a pre-specified rule (e.g., maximum value density), rather
than via recursion and memoization, as in DP. There are many appealing properties of greedy
algorithms: they are often straightforward to state, easy to implement efficiently, and intuitive.

On the other hand, one must take care when using greedy algorithms: they can often be incorrect
if the wrong selection rule is chosen. In fact, oftentimes there is no natural correct greedy rule at
all. For example, how do we know that, despite the failure of greedy algorithms for unbounded
problem, they actually succeed in the fractional variant? We gave a counterexample showing that
greedy is not optimal with integer counts, but how would one prove that it actually is always
optimal when fractional counts are allowed? In the remainder of these notes, we develop general
guidelines and techniques for designing greedy algorithms, and proving their correctness.

1

2 Rearrangement
One of the most powerful tools for arguing about the optimality of greedy algorithms is the rear-
rangement lemma (Lemma 1). This lemma is quite intuitive: it says that if you have two “amounts
of items to take” a1 and a2, and two “item densities” b1 and b2, if your goal is to take the most
total weight, you should take more of the larger-density item. It turns out this lemma is true even
when all of these values are fractional or even negative, making it very simple to remember.

Lemma 1 (Rearrangement lemma). Suppose a1 ≥ a2 and b1 ≥ b2. Then a1b1+a2b2 ≥ a1b2+a2b1.

Proof. It suffices to expand: (a1 − a2)(b1 − b2) ≥ 0 =⇒ (a1b1 + a2b2)− (a1b2 + a2b1) ≥ 0.

The main message of Lemma 1 is straightforward, yet it and its variations are surprisingly powerful
in proving optimality of greedy algorithms. We now give several examples of its use.

2.1 Fractional unbounded knapsack
Let us revisit the fractional unbounded knapsack example. We first simplify slightly: nothing
changes if the ith item instead has weight 1 and value V [i]

W [i] , for all i ∈ [n]. This is because we can
take arbitrary item amounts, and ci units of the original item is equivalent to ciW [i] units of the
item after our simplification, as both yield ciV [i] value and ciW [i] weight. Our new problem is

max
c∈Rn

≥0

∑
i∈[n]

ci ·
V [i]

W [i]
subject to

∑
i∈[n]

ci ≤ B. (1)

Let i? ∈ [n] be the index of the item with the largest value density, computed in Line 2 of
Algorithm 1. Thus, Algorithm 1 returns the solution to (1) with ci? = B and ci = 0 for all i 6= i?.
Denote this solution, returned by Algorithm 1, by calg. We claim it is optimal for (1).

To see this, consider an optimal solution copt ∈ Rn≥0 to (1). We transform it into calg and show
that our transformation cannot decrease the value of (1), which implies calg is also optimal for (1).

We now give this transformation. Take any i ∈ [n] where i 6= i?. Moving all copt
i units of weight

from i to i? cannot decrease (1), by Lemma 1 with a1 = copt
i , a2 = 0, b1 = V [i?]

W [i?] , and b2 = V [i]
W [i] .

Repeating for each i ∈ [n] transforms copt into a vector that puts all
∑
i∈[n] c

opt
i ≤ B units of

weight on item i?. Therefore, it achieves less value in (1) than calg, which puts all B units of
weight allowed on item i?, since V [i?]

W [i?] > 0 by assumption. This proves calg is optimal, as claimed.

2.2 Total completion time
Lemma 1 further generalizes to n variables. Consider the following situation: you now have n
“amounts of items to take” in sorted order a1 ≥ a2 ≥ . . . ≥ an, as well as n “item densities” in
sorted order b1 ≥ b2 ≥ . . . ≥ bn. You are required to take a1 copies of some item (not necessarily
the item with density b1), a2 copies of another item (not necessarily the item with density b2),
and so on, with the goal of maximizing the total weight. Corollary 1 claims that the optimal way
to do this is to take a1 copies of the densest item, a2 copies of the second most dense, and so forth.
It also states that the worst way to do this is by reversing the order of items taken.

Corollary 1 (Rearrangement inequality). Let a,b ∈ Rn have nondecreasing coordinates, i.e.,
a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn. Let π : [n]→ [n] be a permutation.1 Then,∑

i∈[n]

aibi ≥
∑
i∈[n]

aibπ(i) ≥
∑
i∈[n]

aibn+1−i.

Proof. Suppose for the sake of contradiction that the first inequality above is false. Then π cannot
be the identity permutation (which sets π(i) = i for all i ∈ [n]), so there is at least one inversion
(i, j) ∈ [n]× [n], with π(i) > π(j) but i < j. Swapping π(i) and π(j) can never decrease our value∑
i∈[n] aibπ(i), by Lemma 1. Repeating until π agrees with the identity gives a contradiction.

1A permutation is a one-to-one function from [n]→ [n]: if n = 3, π(1) = 2, π(2) = 1, π(3) = 3 is a permutation.

2

To see the second inequality above, we repeat the same argument but now our goal is to turn
any non-inversion into an inversion. Lemma 1 shows this decreases objective value, and the only
permutation such that every pair of indices is inverted is the reverse of the identity.

We now give an application of Corollary 1 to the total completion time problem. In this problem,
we are given as input T , an Array instance containing n positive numbers representing the durations
of n jobs we wish to complete, so the ith job has a duration of T [i]. We are tasked with assigning
intervals [si, ei] ⊂ R≥0 such that ei − si = T [i] (i.e., enough time has passed that we can service
the ith job), and no two intervals overlap. Our goal is to assign intervals such that∑

i∈[n]

ei,

i.e., the sum of all completion times, is minimized. We first observe that the optimal choice of
intervals spends no idle time: it begins the (i + 1)th job immediately after finishing the ith job.
Otherwise, removing idle intervals can only decrease the completion objective (3), since all ei get
smaller. Therefore, the optimal solution has the structure: for some permutation π : [n]→ [n],

eπ(i) =
∑
j∈[i]

T [π(j)]. (2)

In other words, we schedule jobs back-to-back, one at a time according to the permutation π (so
π(1) is the index of the first job serviced, π(2) is the second, and so on), so that the π(i)th job is
completed at a time eπ(i) when all earlier jobs (according to π) have finished. The only degree of
freedom in our solution is now the choice of permutation π. We hence rewrite the problem as

min
π:[n]→[n] is a permutation

f(π), where f(π) :=
∑
i∈[n]

∑
j∈[i]

T [π(j)]. (3)

We claim that the optimal π is the one that sorts T in nondecreasing order, i.e., we service the
shortest job first. Assume for simplicity that T has already been sorted in this way, so our goal is
to prove that the identity π is optimal for (3). We prove this by rewriting (3) in a simpler way:

f(π) =
∑
j∈[i]

T [π(j)] = T [π(1)] + (T [π(1)] + T [π(2)]) + (T [π(1)] + T [π(2)] + . . .+ T [π(n)])

= n · T [π(1)] + (n− 1) · T [π(2)] + . . .+ T [π(n)] =
∑
i∈[n]

(n+ 1− i) · T [π(i)].

(4)
In other words, we need to pay some duration n times, another duration n − 1 times, and so on.
Now the claim that the identity permutation is optimal follows from Corollary 1, applied with
ai = T [i] and bi = i for all i ∈ [n]. In particular, a and b are sorted in reverse order to each other,
so Corollary 1 shows that the minimal way to pair up their coordinates is by reversing the order
of b, which is exactly achieved by (4) with the identity permutation π(i) = i.

2.3 Fractional 0-1 knapsack
We finally consider a variant of the fractional unbounded knapsack problem: the fractional 0-1
knapsack problem, where the goal is to solve

max
c∈[0,1]n

f(c) subject to
∑
i∈[n]

ciW [i] ≤ B, where f(c) :=
∑
i∈[n]

ciV [i]. (5)

Note that in (5), the count vector c has c ∈ [0, 1]n, i.e., we are still allowed to take fractional
amounts, but we cannot take more than one unit of any item. We make the simplifying assumption
that all value densities V [i]

W [i] are distinct, since otherwise we can lump together all of the items with
the same density into a single item, which does not change the problem.

This problem appears more challenging than either of those we previously handled. Unlike the
unbounded variant in Section 2.1, we cannot simplify so that all weights are identical, because the
amount of each item that is available to us matters. Moreover, the amounts we can take change

3

Algorithm 2: FracZOKnapsack(W,V,B)

1 Input: W,V , two Array instances containing n numbers in R>0, B > 0

2 Sort W,V similarly, so that items i ∈ [n] are in decreasing order by V [i]
W [i]

3 (b, v, i)← (B, 0, 1)
4 while b−W [i] ≥ 0 and i ∈ [n] do
5 (b, v, i)← (b−W [i], v + V [i], i+ 1)
6 end
7 if i == n+ 1 then
8 return v
9 end

10 else
11 return v + b

W [i] · V [i]

12 end

depending on which items are taken, so Corollary 1 does not quite apply either. Nonetheless, you
may guess that we should prioritize taking value-dense items first, just like in the unbounded case.
Indeed, we claim that the following greedy Algorithm 2 solves this problem optimally.

Algorithm 2 first sorts the items by value density, so that the most value-dense item comes first.
It then repeatedly takes entire items until either taking the next item would go over the weight
budget, or all items are taken. In the former case, it takes as much of the last item as possible.

Assume that
∑
i∈[n]W [i] > B, as otherwise Algorithm 2, which produces the all-ones vector in

this case, is clearly optimal (no feasible c can be larger than 1 entrywise). Let i? ∈ [n] be the value
of i when Algorithm 2 terminates. Algorithm 2 then attains value f(calg) for (5), where

calg
i =

1 i ∈ [i? − 1]
B−

∑
i∈[i?−1]W [i]

W [i?] i = i?

0 i ∈ [n] \ [i?]

. (6)

Suppose for the sake of contradiction that calg is not optimal for (5). Let copt ∈ [0, 1]n instead be
optimal for (5). We obtain a contradiction by transforming copt into a different vector c′ achieving
a strictly greater total value, i.e., f(c′) ≥ f(copt), without affecting the total weight taken.

To do so, we claim that there are indices j, k with 1 ≤ j < k ≤ n such that copt
j < calg

j and
copt
k > calg

k . Assuming this is true, let ∆ := min(copt
k − calg

k , W [j]
W [k] · (c

alg
j − copt

j)) > 0, and define

c′i =

copt
j + ∆ · W [k]

W [j] i = j

copt
k −∆ i = k

copt
i i 6∈ {j, k}

.

That is, the only coordinates of copt that changed were the jth and kth coordinates, and by our
choice of ∆, we still have c′ ∈ [0, 1] since c′k ≥ calg

k and c′j ≤ calg
j . The total weight change is(

∆ · W [k]

W [j]

)
·W [j]−∆ ·W [k] = 0,

so c′ stays within the budget as it achieves the same total weight as copt. However, c′ yields a
higher objective value than copt in (5), since the jth item has a higher value density than the kth:

f(c′)− f(copt) =

(
∆ · W [k]

W [j]

)
· V [j]−∆ · V [k] =

(
V [j]

W [j]
− V [k]

W [k]

)
·∆ ·W [k] > 0.

Therefore, as long as such indices j, k exist, no other count vector copt can be optimal.

We conclude by proving our earlier claim about the existence of j, k. Let j be the first index where
calg
j 6= copt

j . By construction, copt
j < calg

j , since calg puts the maximum possible count on each
index sequentially. Finally, there must be k > j where copt

k > calg
k . Otherwise, copt

k ≤ calg
k for all

k ∈ [n], and hence copt cannot attain greater value in (5), contradicting its definition.

4

3 Exchange arguments
The examples developed in Section 2 follow a similar structure. In each case, our goal was to argue
that a solution xalg produced by a greedy algorithm was optimal for some objective function f .
For example, in Section 2.2 we reduced the problem to the form (3), an optimization problem in
an objective f over permutations π : [n]→ [n], and claimed that the permutation πalg sorting jobs
in nondecreasing duration order was optimal. Similarly, in Section 2.3, we claimed that calg in (6)
was optimal among c ∈ [0, 1]n meeting a weight constraint, for the objective f in (5).

We proved optimality of the solutions xalg produced by our greedy algorithms in each case by first
assuming the existence of an optimal solution, xopt, and comparing f(xopt) to f(xalg). Of course,
our goal is to establish that f(xalg) ≥ f(xopt) (or vice versa, if our objective is minimization of f
rather than maximization). We saw a few different ways to prove this type of bound.

In Section 2.1, we gradually transformed xopt into xalg, and showed f only improved after each
step of the transformation. In Section 2.2, we applied Corollary 1, which is really just an iterative
application of Lemma 1 that transforms a permutation into the optimal permutation. Finally,
in Section 2.3, we showed how any solution unequal to our greedy algorithm’s choice could be
transformed into a better solution, preventing any other solution from being optimal.

These are examples of exchange arguments that transform a purported optimal solution xopt into
our solution xalg. These exchange-based transformations can be partial or full, as well as piece-by-
piece or all-at-once, but in each case the goal is to argue that the greedy solution xalg does better
than any other candidate xopt. One can either achieve this by proving that f continually does not
get worse until our transformation is complete (as done in Sections 2.1 and 2.2), in which case we
have shown that xalg indeed better candidate than xopt, or by directly contradicting the definition
of xopt by demonstrating a strict objective value improvement (as done in Section 2.3). We give
several additional examples of exchange arguments in this section.

3.1 Weighted total completion time
We first consider a weighted variant of the total completion time problem from Section 2.2. Here,
in addition to the input Array T containing the duration times of n jobs, we are also given W , an
Array instance containing n positive numbers representing the weights of our jobs. We are tasked
with assigning non-overlapping intervals [si, ei = si + T [i]] ⊂ R≥0, with the goal of minimizing∑

i∈[n]

eiW [i].

That is, we care about minimizing the weighted sum of completion times. As before, clearly there
is no advantage to idle time, so the optimal solution is to choose a permutation π : [n]→ [n] such
that the completion time relationship (2) holds. Following (3), our new optimization problem is:

min
π:[n]→[n] is a permutation

f(π), where f(π) :=
∑
i∈[n]

W [π(i)]

∑
j∈[i]

T [π(j)]

 . (7)

We claim that sorting W,T similarly such that T [i]
W [i] is in nondecreasing order is optimal. Assume

that the lists have already been sorted in this way, in which case our claim is that the identity
permutation π is optimal for (7). Our proof will not be quite as straightforward as in Section 2.2,
since Corollary 1 does not apply directly. This is because the choice of π dictates the weight of
each job; unlike in (4), we are not just taking n copies of some duration T [π(1)], n − 1 copies of
some other duration, and so on, as the number of copies changes depending on π.

Nonetheless, we can use a similar strategy as in the proof of Corollary 1. Recall that the identity
permutation is the unique permutation without inversions. We would like to show that undoing
inversions in π decreases the value of f(π), the same idea that was used to prove Corollary 1.
However, this strategy seems more complicated here, due to the fact that swapping two intervals
affects the completion times of all intervals in between, significantly altering the formula (7). We
fix this issue with a stronger observation about non-identity permutations.

Lemma 2. Let π : [n] → [n] be a non-identity permutation. Then π has an adjacent inversion,
i.e., a pair of indices (i, i+ 1) such that π(i) > π(i+ 1).

5

Proof. Suppose π has no adjacent inversion. Then π(1) ≤ π(2) ≤ . . . ≤ π(n). Because π is a
permutation, the only possible π satisfying these inequalities is the identity, a contradiction.

Lemma 2 dramatically simplifies our argument: by undoing only adjacent inversions, we localize
the change in the objective. Namely, swapping two adjacent intervals π(i) and π(i + 1) does not
affect the completion time of any other interval, so only two terms in the formula (7) change. We
are now ready to prove that the identity permutation is optimal for (7) via this approach.

Suppose that π is optimal for (7), and suppose it is not the identity permutation. By Lemma 2,
there is an adjacent inversion (i, i + 1), i.e., π(i) > π(i + 1) for some i ∈ [n − 1]. Because we
assumed indices were sorted by T [i]

W [i] , π(i) > π(i+ 1) means that

T [π(i)]

W [π(i)]
≥ T [π(i+ 1)]

W [π(i+ 1)]
. (8)

Let π′ be identical to π, except π′(i + 1) = π(i) and π′(i) = π(i + 1), i.e., it swaps the ith and
(i+ 1)th intervals and leaves the order unchanged otherwise. We compute

f(π)− f(π′) =
∑
i∈[n]

W [π(i)]

∑
j∈[i]

T [π(j)]

−∑
i∈[n]

W [π′(i)]

∑
j∈[i]

T [π′(j)]

= W [π(i+ 1)]

 ∑
j∈[i+1]

T [π(j)]

+W [π(i)]

∑
j∈[i]

T [π(j)]

−W [π(i+ 1)]

 ∑
j∈[i−1]

T [π(j)] + T [π(i+ 1)]

−W [π(i)]

 ∑
j∈[i+1]

T [π(j)]

= W [π(i+ 1)]T [π(i)]−W [π(i)]T [π(i+ 1)] ≥ 0,

where in the last line we used (8). This proves that undoing an adjacent inversion cannot increase
the objective value. After undoing all adjacent inversions, the contrapositive of Lemma 2 shows
that we end up at the identity permutation, which shows the identity is optimal for (7) as claimed.

3.2 Minimizing lateness
We next consider a related problem where a similar strategy applies. In the minimizing lateness
problem, our task is again to schedule n jobs, with positive durations given by an input Array T ,
into non-overlapping intervals [si, ei = si + T [i]] ⊂ R≥0. We are given an additional input another
Array instance D containing n positive numbers, representing job deadlines. Our goal is to assign
intervals that minimize the maximum lateness of any of our jobs: maxi∈[n] ei −D[i].

It is clear that idle time can only increase the maximum lateness, so we again rephrase the prob-
lem in terms of permutations. As before, if we schedule the jobs back-to-back according to a
permutation π, the completion times are given by (2). Thus, our goal in this section is to compute

min
π:[n]→[n] is a permutation

f(π), where f(π) := max
i∈[n]

eπ(i) −D[π(i)] = max
i∈[n]

∑
j∈[i]

T [π(j)]−D[π(i)]. (9)

We claim that if T,D are sorted similarly such that D is in nondecreasing order, the identity
permutation π is optimal for (9). We prove this using a similar argument as in Section 3.1.

Again suppose π is not the identity, so Lemma 2 shows π has an adjacent inversion (i, i+ 1), i.e.,
π(i) > π(i+ 1). By assumption, this means D[π(i)] ≥ D[π(i+ 1)]. Let π′ be the permutation that
swaps π(i) and π(i+ 1), leaving all other entries unchanged. We claim f(π′) ≤ f(π).

Let j be the maximizing argument in (9) for f(π′), i.e., f(π′) = eπ′(j) −D[π′(j)] is the lateness of
the jth interval. If j 6∈ {i, i+ 1}, then π′(j) = π(j) and eπ′(j) = eπ(j), so that

f(π′) = eπ′(j) −D[π′(j)] = eπ(j) −D[π(j)] ≤ max
k∈[n]

eπ(k) −D[π(k)] = f(π).

6

This leaves the case where j ∈ {i, i+ 1}. To handle this case it suffices to show

max (A+ T [π(i+ 1)]−D[π(i+ 1)], A+ T [π(i)] + T [π(i+ 1)]−D[π(i)])

≤ max (A+ T [π(i)]−D[π(i)], A+ T [π(i)] + T [π(i+ 1)]−D[π(i+ 1)]) ,
(10)

where we denote the sum of durations of the jobs completed before π(i) or π(i+ 1) by

A :=
∑

j∈[i−1]

T [π(j)].

Finally, (10) is true since its right-hand side’s second term dominates both terms on the left-hand
side, using our assumption that D[π(i)] ≥ D[π(i+ 1)], because i was an adjacent inversion:

A+ T [π(i+ 1)]−D[π(i+ 1)] ≤ A+ T [π(i)] + T [π(i+ 1)]−D[π(i+ 1)],

A+ T [π(i)] + T [π(i+ 1)]−D[π(i)] ≤ A+ T [π(i)] + T [π(i+ 1)]−D[π(i+ 1)].

We have thus shown using (10) that undoing adjacent inversions improves our objective (9). Re-
peatedly undoing such inversions results in the identity permutation, which is hence optimal.

3.3 Scheduling revisited
We now revisit the scheduling problem from Section 3.1, Part III. The setup is exactly the same as
before: we wish to schedule a maximum-size set of non-overlapping intervals, given as L, an Array
of n tuples (`i, ri). In other words, we wish to find

max
S⊆[n]

f(S) subject to S is non-overlapping, where f(S) := |S|.

We claim that the following greedy Algorithm 3 succeeds in solving this problem.

Algorithm 3: GreedyScheduling(L)

1 Input: L, an Array instance containing n tuples {(`i, ri)}i∈[n] in R2 with `i < ri for all i ∈ [n]
2 Sort L in non-decreasing order by ri, i.e., r1 ≤ r2 ≤ . . . ≤ rn
3 (count, i)← (1, 1)
4 for 2 ≤ j ≤ n do
5 if `j > ri then
6 (count, i)← (count + 1, j) // Include interval j.
7 end
8 end
9 return count

Algorithm 3 maintains a current index i, pointing to the last interval included in the set S. It
scans through the intervals in L, trying to find the first index j where `j > ri, so that the jth
interval does not overlap with the ith. It includes the first such interval it finds, updating i and
the count appropriately. The algorithm terminates after we have looped through all of L.

We prove optimality of Algorithm 3 by using an exchange argument introduced in [KT05], Chapter
4 as the “greedy stays ahead” argument. Let Salg ⊆ [n] be the subset of indices included by Line 6
of Algorithm 3. We denote these indices Salg = {a1, a2, . . . , ak}, sorted so that a1 < a2 < . . . < ak.

To implement the argument, let Sopt be an optimal set of non-overlapping interval indices, denoted
Sopt := {b1, b2, . . . , bm} sorted so that b1 < b2 < . . . < bm. By optimality of Sopt, and because Salg

is a non-overlapping set by construction, we must have m = |Sopt| ≥ |Salg| = k. Our main claim
is that for all i ∈ [k], ai ≤ bi, or equivalently the ith interval in Salg ends before the ith interval
in Sopt ends, because we sorted L in non-decreasing order by right endpoint. This is the sense in
which the greedy solution from Algorithm 3 stays ahead of any other solution.

We proceed via induction. For the base case i = 1, Algorithm 3 always sets a1 = 1 (taking the
first interval), so a1 ≤ b1. Next, suppose that we have shown ai ≤ bi for some i ∈ [n]. Since the
bthi+1 interval does not overlap with the bthi interval, we have `bi+1

> rbi . However, by the inductive

7

hypothesis this implies `bi+1
> rai , since ai ≤ bi and we sorted the right endpoints in nondecreasing

order. This means that bi+1 was a valid interval to include in Salg after taking our first i choices,
as it begins after the interval [`ai , rai] ends. Because Algorithm 3 includes the index of the first
available interval after [`ai , rai] ends as ai+1, we can conclude the desired ai+1 ≤ bi+1.

Let us see why this “greedy stays ahead” claim implies k = m. Indeed, suppose for contradiction
that m > k, and consider the subset Salg ∪ {bk+1}. We claim that this is also a non-overlapping
subset, because our inductive hypothesis ak ≤ bk implies rak ≤ rbk , and `bk+1

> rbk by construction.
Thus, `bk+1

> rak , so we could have added the bthk+1 interval to Salg, a contradiction because when
Algorithm 3 terminates, there were no more available intervals. Thus, k = m and Salg is optimal.

4 Matroids
In this section, we present a general structure in subset selection problems that permits proving
greedy algorithms are optimal. Specifically, we show that if the selection problem asks to find a
maximum-weight independent set (or minimum-weight independent set) in a set system known as
a matroid, then the greedy algorithm is always optimal. This fact follows from a generic exchange
argument that always works in such set systems. In fact, it turns out that using a greedy algorithm
is optimal iff the set system is a matroid. We begin with a case study of the minimum spanning
tree problem in Section 4.1, the most famous application of matroid theory. We then explain how
to extend our approach to general matroids in Section 4.2, with illustrative examples.

4.1 Minimum spanning tree
In the minimum spanning tree (MST) problem, we are given as input a connected undirected graph
G = (V,E,w). Our goal is to output a spanning tree T ⊆ E with minimum total weight, i.e., a
tree subgraph of G achieving the smallest objective value defined by f(T) :=

∑
e∈T we. Recall

from Section 4, Part I that a graph is a forest iff it contains no cycles, and a tree is a maximal
forest in the sense that it has n− 1 edges, and any graph with ≥ n edges must contain a cycle. We
hence consider the following, very natural conceptual greedy algorithm for MST.

Algorithm 4: MSTConceptual(G)

1 Input: G = (V,E,w), a connected undirected graph
2 Sort E in nondecreasing order by weight
3 T ← ∅
4 for e ∈ E do
5 if T ∪ {e} contains no cycle then
6 T ← T ∪ {e}
7 end
8 end
9 return T

Algorithm 4 maintains a current set of edges T , and repeatedly tries to add edges to T , starting
with the lowest-weight edge. If the edge currently under consideration can be added to T without
creating a cycle, we greedily include it, and otherwise we move on to the next edge. Deferring
implementation details to a later discussion, we claim that Algorithm 4 solves the MST problem
correctly. This fact, attributed to [JBK56] so that Algorithm 4 is called Kruskal’s algorithm, is
perhaps quite surprising given the simplicity of our algorithm. We prove optimality of Algorithm 4
in this section, and show how it is representative of a more general phenomenon in Section 4.2.

It is perhaps not even obvious that Algorithm 4 returns a tree. Suppose for contradiction that at
termination, T contains at least two distinct connected components. Then, there is some edge e ∈ E
joining these two components, else G would not be connected. When e is first encountered, T ∪{e}
contains no cycle, since T only grows in size over time, and this is true at termination. Hence, e
would have been included by Line 6, a contradiction to the components being disconnected. What
remains is to show that the resulting T is optimal for the MST problem.

In fact, we will prove a stronger claim. We claim that Algorithm 4 solves the minimum spanning

8

forest problem correctly at every step: whenever |T | = k in the execution of Algorithm 4 for
any k ∈ [n − 1], the weight of T is optimal among any forest subgraph of G with k edges. This
claim is highly reminiscent of the “greedy stays ahead” argument from Section 3.3. Applying this
strengthened claim with k ← n− 1 proves optimality of Algorithm 4 for MST.

To prove our stronger claim, we require a helper fact that underlies our exchange argument.

Lemma 3. Let G = (V,E,w) be an undirected graph, and let F ⊆ E, F ′ ⊆ E be two forest
subgraphs of G with |F | < |F ′|. Then there is some e ∈ F ′ such that F ∪ {e} remains a forest.

Proof. Let |F ′| = n−c′ and |F | = n−c for some 1 ≤ c′ < c. By Lemma 16, Part I, letting wF ∈ RF

denote the restriction of w to F , the subgraph (V, F,wF) has c connected components. Similarly,
the subgraph (V, F ′,wF ′) has c′ < c connected components. We claim that this means some edge
e ∈ F ′ joins two connected components in F . Indeed, if this were not the case, then every edge in
F ′ lies in some connected component in F , so the number of connected components in F ′ is ≥ c,
a contradiction. Thus, some e ∈ F ′ joins two connected components in F . Its inclusion cannot
create a cycle, as otherwise there was already a path between the two connected components.

Let us see how Lemma 3 helps us conclude our argument. For convenience, denote the edges added
to T in Algorithm 4 by {e1, e2, . . . , en−1}, where edges are added in sequence, i.e., e1 is added first.
Suppose for contradiction that after adding k edges to T , Algorithm 4 is suboptimal for the first
time. This means that for any j < k, there exists no forest of size j with total weight ≤

∑
i∈[j] wei ,

but that there exists a forest F ′ ⊆ E with |F ′| = k and
∑
e∈F ′ we <

∑
i∈[k] wei .

We obtain a contradiction via Lemma 3. Denote the edges in F ′ by {e′1, e′2, . . . , e′k}. Let F be the
forest consisting of {e1, e2, . . . , ek−1}. Then Lemma 3 states that there is some edge, without loss
of generality e′k, such that F ∪ {e′k} is a forest. It must be the case that we′k

< wek , as otherwise,∑
e∈F

we = wek +
∑

i∈[k−1]

wei ≤ we′k
+

∑
i∈[k−1]

we′i
=
∑
e′∈F

we′ ,

violating our earlier assumption
∑
e∈F ′ we <

∑
i∈[k] wei . However, we′k

< wek also gives a contra-
diction, since Algorithm 4 should have picked e′k instead of ek in Line 6, as e′k has strictly smaller
weight than ek (so it is encountered earlier) and also does not form a cycle when added to F .

Implementation details. We have shown that Algorithm 4 is optimal for the MST problem,
but as written, it appears somewhat inefficient. However, letting n := |V | and m := |E|, there is
a simple implementation of Algorithm 4 that runs in O(m log(n)) time, presented as Algorithm 5.

Algorithm 5 explicitly keeps track of the connected component C[v] each vertex v ∈ V belongs
to, throughout the algorithm. It also creates lists (implemented as Stack instances) containing the
members of each connected component. Originally, every vertex is in its own connected component.
When an edge is discovered on Line 11 that would be included in the final tree by Algorithm 4,
Algorithm 5 also includes the edge (because it joins two existing connected components). Algo-
rithm 5 further updates the connected component information it maintains, by merging the smaller
component into the larger one. Because it makes the exact same choices as Algorithm 4, we have
proven Algorithm 5 also correctly produces an MST. We now discuss its runtime.

Sorting the edges in Line 2 takes O(m log(n)) time, where we recalled m ≤ n2 so log(m) =
O(log(n)). The initialization in Lines 10 to 28 takes O(n) time. All steps of the loop from Line 10
to 28 run in O(1) time except potentially the merging operations in Lines 13 to 19 and Lines 20
to 26. These operations pay O(1) time per vertex that needs to change connected components.

Observe that every time a vertex changes connected components, it moves from a smaller com-
ponent to a larger component, so the size of its connected component at least doubles with each
move. This can only happen O(log(n)) times, so the algorithm can only spend O(log(n)) time
merging any vertex in Lines 13 to 19 and Lines 20 to 26. The overall cost of merging operations is
thus O(n log(n)), and because we assume G is connected, m ≥ n−1 so O(n log(n)) = O(m log(n)).
Thus, the overall runtime of Algorithm 5 is O(m log(n)) as claimed.

Improvements. The MST problem admits a variety of efficient algorithms, with various proper-
ties that may be preferable to Algorithm 5. The first such algorithm is due to Borůvka [Bor26].

9

Algorithm 5: MST(G)

1 Input: G = (V,E,w), a connected undirected graph with n := |V | and m := |E|
2 Sort E in nondecreasing order by weight
3 C ← Array.Init(n) // Track connected components of all vertices.
4 for i ∈ [n] do
5 C[i]← i // Initialize all connected components to size 1.
6 Si ← Stack.Init()
7 Si.Push(i) // Si includes all vertices in the ith connected component.

8 end
9 T ← ∅

10 for e = (u, v) ∈ E do
11 if C[u] 6= C[v] then
12 T ← T ∪ e // Include edge e just as in Algorithm 4.
13 if |SC[u]| ≥ |SC[v]| then

// Merge smaller connected component C[v] into bigger connected component C[u].
14 for k ∈ [|SC[v]|] do
15 w ← SC[v].Pop()
16 C[w]← C[v]
17 SC[u].Push(w)

18 end
19 end
20 else

// Merge smaller connected component C[u] into bigger connected component C[v].
21 for k ∈ [|SC[u]|] do
22 w ← SC[u].Pop()
23 C[w]← C[v]
24 SC[v].Push(w)

25 end
26 end
27 end
28 end
29 return T

Borůvka’s algorithm has the added benefit of being easily parallelizable, as it tries to add as many
cross-component edges as possible in each step, and each connected component can be handled by
its own parallel thread. Another famous MST algorithm is Prim’s algorithm [Pri57], which slowly
grows a tree in each step by including the minimum-weight edge involving a non-tree vertex.

Using more sophisticated techniques, [KKT95] designed a randomized MST algorithm that runs
in O(m) time. Moreover, [Cha00] gave a deterministic MST algorithm that runs in O(mα(m,n))
time, where α(m,n) is an extremely slow-growing function known as the inverse Ackermann’s
function. The current state-of-the-art is by [PR02], who surprisingly designed an MST algorithm
achieving the optimal runtime for the problem, even if the asymptotic nature of that runtime is
not yet known. All of these algorithms work in a restricted computational model where the only
numerical operation allowed is comparing two edge weights to determine which is larger.

4.2 Basis selection
Interestingly, the greedy strategy in Section 4.1 applies to a wide range of subset selection problems,
known as basis selection in matroids. To introduce this problem, we need a definition.

Definition 1 (Matroid). Let (I, [m]) be a set system, where I is a set of subsets of [m], i.e., each
S ∈ I satisfies S ⊆ [m]. We call (I, [m]) a matroid if it satisfies the following two properties.

• Heredity. If S ∈ I and T ⊆ S, then T ∈ I.

• Exchange. If S, T ∈ I and |S| < |T |, then there is some t ∈ T such that S ∪ {t} ∈ I.

In this case, we say that I are the independent sets of the matroid.

10

We have already seen an example of a matroid: spanning trees. In particular, let [m] ≡ E denote
the edges of some graph, and say that a subset of the edges S ⊆ [m] is independent if it contains
no cycle. This definition of independent sets satisfies the heredity property, as any subset of a
cycle-free subset is also cycle-free (removing edges cannot create a cycle). Moreover, we proved in
Lemma 3 that these independent sets also satisfy the exchange property. Thus, the set of forests
in any graph are the independent sets of a matroid, commonly called the graphic matroid.

One useful property of matroids is that all maximal independent sets have the same size.

Lemma 4. Let (I, [m]) be a matroid, and let S, T ∈ I be maximal independent sets, i.e., adding
any e ∈ [m] to either S or T would break independence. Then |S| = |T |.

Proof. Suppose otherwise for contradiction, and without loss of generality let |S| < |T |. By the
exchange property of matroids (Definition 1), there is some element t ∈ T such that adding it to
S would preserve independence. This contradicts the assumption that S was maximal.

To simplify notation, we henceforth define a basis of a matroid (I, [m]) to be any maximal inde-
pendent set, i.e., an S ∈ I such that S ∪{e} 6∈ I for any e 6∈ S. We also define the rank of (I, [m])
to be the value r such that |S| = r for all bases S ∈ I. Note that r is unique in light of Lemma 4.

We can now define the basis selection problem. In this problem, we are given a matroid (I, [m]).2
Every element e ∈ [m] further has a weight we, and we are given w ∈ Rm as part of the input.
Our goal is to output a basis S of the matroid with minimum total weight, f(S) :=

∑
e∈S we.

It turns out that the following simple generalization of Algorithm 4 optimally solves basis selection.

Algorithm 6: BasisSelection((I, [m]),w)

1 Input: (I, [m]), a matroid, w ∈ Rm

2 Sort [m] in nondecreasing order by weight
3 T ← ∅
4 for e ∈ [m] do
5 if T ∪ {e} ∈ I then
6 T ← T ∪ {e}
7 end
8 end
9 return T

Algorithm 6 is almost identical to Algorithm 4, except we check for independence of a set after
adding a new element, rather than checking for the resulting graph containing a cycle. Following
our earlier discussion of graphic matroids, this is indeed a generalization, as containing no cycle is
the same thing as remaining independent in this case due to the way we defined the matroid.

This is no coincidence; indeed, essentially everything about the correctness analysis of Algorithm 4
extends immediately to prove correctness of Algorithm 6 as well. Let r be the rank of the input
matroid. The argument is still that after k steps for any choice of k ∈ [r], Algorithm 6 produces
an independent set of less total weight than any other size-k independent set. This is proven by
using the exchange property of matroids (Definition 1) in place of Lemma 3.

Also, we observe that in addition to minimum weight basis selection problems, Algorithm 6 can
further be used on maximum weight basis selection problems. To see this, we can negate the weight
of every weight in the maximum variant before passing to Algorithm 6. The minimum weight basis
in the negated instance is the same as the maximum weight basis in the original instance.

Amazingly, we can conclude something much stronger than the fact that Algorithm 6 is optimal
if (I, [m]) is a matroid. One can define a basis selection problem for any set system (I, [m]),
satisfying the heredity property: our goal is still to produce a minimum-weight basis for the set
system. It turns out that if Algorithm 6 is optimal for a basis selection problem for any choice of
weights w ∈ Rm, then the set system has to be a matroid. For a proof, see Chapter E of [Eri24].

2More concretely, when we say we are given the matroid, we mean that we are given a subroutine A which takes
as input a subset S ⊆ [m] and evaluates whether S ∈ I. We call this subroutine an independence oracle for (I, [m]).

11

The contrapositive of this fact is that if a set system is not a matroid, then Algorithm 6 is provably
not optimal for basis selection. This is always a useful fact to know when selecting an algorithm, as
we can immediately rule out this greedy approach. For example, consider our weighted scheduling
problem from Section 3.1, Part III. We can associate a set system (I, [m]) to any problem instance,
where there are m intervals and a subset S ⊆ [m] of the intervals is independent iff no two intervals
in S overlap. This set system satisfies the heredity property, since removing intervals cannot create
overlaps. However, it is not a matroid, as there can be maximal independent sets of different sizes
(e.g., with intervals [0, 3], [0, 1], [2, 3]), contradicting Lemma 4. Therefore, a greedy algorithm that
selects available intervals by minimum weight will not optimally solve weighted scheduling.

We conclude with another famous example of a matroid, linear matroids. The attentive reader
familiar with linear algebra may have already noticed that much of our terminology is borrowed
from similar concepts regarding matrices and vector spaces (for a review, please see Section 5, Part
I of the lecture notes). It turns out that one can associate a matroid with any matrix A ∈ Rn×m,
with columns {a(i)}i∈[m] ⊂ Rn. For any subset of the column indices S ⊂ [m], we say that S is
independent iff the associated column vectors {a(i)}i∈S are linearly independent. This set system
satisfies the heredity property, as removing vectors cannot create linear dependencies. We claim
that it also satisfies the exchange property, justifying our naming it the linear matroid.

Lemma 5. Let {a(i)}i∈S ⊂ Rn, {b(j)}j∈T ⊂ Rn be two linearly independent sets of vectors, and
assume that |S| < |T |. Then there is a j ∈ T such that {a(i)}i∈S ∪ {b(j)} is linearly independent.

Proof. We frequently make use of the interpretation of matrix-vector multiplication after Eq. (16)
in Part II of the lecture notes, which says any linear combination of {a(i)}i∈S can be written as
Ac =

∑
i∈S cia

(i) for a coefficient vector c ∈ R|S|. Let A ∈ Rn×|S|, B ∈ Rn×|T | have {a(i)}i∈S ,
{b(j)}j∈T as their respective columns. If we assume for the sake of contradiction that there is
no j ∈ T such that {a(i)}i∈S ∪ {b(j)}j∈T is linearly independent, there is a coefficient matrix
C ∈ R|S|×|T | such that AC = B. We will prove that these matrices cannot have equal rank.

We first claim that rank(AC) ≤ rank(A) for any C with |S| rows. This is because the rank is the
dimension of the column span, and the column span of AC is contained in the column span of A.
In particular, for any v of appropriate dimension, we have

ACv = A (Cv) ∈ Span
(
{a(i)}i∈S

)
showing any linear combination of AC’s columns is also a linear combination of A’s columns.

Finally, we can finish the proof. For any matrix B with linearly independent columns indexed by
T , its column rank is |T |, because the maximum number of linearly independent columns we can
select is all of them. Thus, rank(B) = |T | and rank(AC) ≤ |S| < |T | for any C. However, we
showed earlier that under our assumption, there exists C such that B = AC, a contradiction.

One exciting consequence of our development thus far is that for a general family of basis selection
problems in linear algebra, consisting of choosing a minimum-weight or maximum-weight basis of a
set of vectors, the greedy algorithm is provably optimal. This is because bases in linear algebra are
independent sets of a matroid. These problems have natural uses in feature selection in machine
learning, where we have a set of candidate feature directions, and we want to choose an important
yet diverse set of the features. The requirement of linear independence promotes diversity in our
selected subset, and the requirement of weight optimization allows us to specify importance scores
to different directions, based on how present these features are in our dataset.

In general, it is an assumption (which needs to be justified on a case-by-case basis) that we can
perform Line 5 of Algorithm 6 efficiently, e.g., in polynomial time. We briefly justify this in the
case of linear matroids here; the argument for graphic matroids (based on maintaining connected
components) was presented in Section 4.1. To check that the columns of a matrix A ∈ Rn×m are
linearly independent, it suffices to form a linear system a(1) = A(−1)c, where A(−1) consists of all
columns of A but the first, and we try to express the first column a(1) as a linear combination of
the others. We can attempt to solve this system using Gaussian elimination in O((m+ n)3) time,
and it will fail to correctly return a coefficient vector c if A has linearly independent columns.

In Part VI of the lecture notes, we will explore ways of solving linear systems even faster for many
structured matrices A, which are more continuous and less algebraic in nature.

12

5 Stable matching
We conclude these notes with one of the most famous applications of greedy algorithms: stable
matching. In the simplest variant of this problem, there are n applicants who we wish to pair
with n job openings, such that every applicant is matched with exactly one job and every job is
matched with exactly one applicant (this is called a perfect matching). The input to the problem
is 2n different lists: each applicant submits a ranked order list of their preferences among the jobs,
and each job opening submits a ranked order list of their preferences among the applicants. To
simplify the problem, we assume that there are no ties in the preference orderings.

Our goal is to return a matching between jobs and applicants, that is stable in a precise sense.
Essentially, we wish to prevent the following failure mode that can arise after our proposed matching
is announced. Suppose we paired up applicant a with job α,3 and applicant b with job β, but β
preferred a to b, and a preferred β to α. Then, it is reasonable to expect that the job opening β
and the applicant a may cut a backroom deal, where both a and β renege on the job-applicant
pairs given by the matching, and internally pair themselves up instead.

Formally, a matching is stable iff for every potential backroom deal (a, β), where a is assigned the
job α 6= β and β is assigned the applicant b 6= a, either a prefers its actual job assignment α over
β, or β preferred its actual applicant assignment b over a. This implies that at least one of the
parties a or β is disincentivized to make this deal. The stable matching problem asks to return a
stable matching, when given preference orderings of all applicants and job openings as inputs.

This problem has many real-world applications, and indeed, its study was motivated by an algo-
rithm that was already used by the National Resident Matching Program to place U.S. medical
school graduates into residency training programs by the 1950s.4 In Algorithm 7, we present a
surprisingly simple algorithm by Gale and Shapley [GS62] that solves the stable matching prob-
lem, which won a Nobel Prize in Economics in 2012. Before stating the Gale-Shapley algorithm,
however, we wish to briefly motivate why simpler approaches to stable matching do not work.

Perhaps the simplest greedy approach to stable matching (inspired by Sections 2 and 3, which
focused on the progress achieved by undoing inversions) is simply to swap any unstable pairs.
Namely, the algorithm starts with an arbitrary perfect matching, and then repeatedly searches for
unstable pairs (a, α), (b, β), fixing the instability by replacing these pairs with (a, β) and (b, α) in
the matching. It is clear that if this procedure ever terminates, the matching is stable.

Unfortunately, it is possible for this naïve greedy algorithm to never terminate.5 Consider a system
with n = 3, where applicant a has the preference list (most-preferred ranked first) {α, γ, β},
applicant b has the preference list {γ, α, β}, and applicant c has the preference list {α, β, γ}.
Conversely, suppose that the job openings α, β, γ respectively have applicant preference rankings
{b, a, c}, {c, a, b}, and {a, b, c}. If our initial matching is {(a, α), (b, β), (c, γ)}, then undoing the
unstable pairs (b, α), (b, γ), (a, γ), and (a, α) produces the following matchings in sequence:

{(a, α), (b, β), (c, γ)} (b,α)−−−→ {(b, α), (a, β), (c, γ)}
(b,γ)−−−→ {(c, α), (a, β), (b, γ)}
(a,γ)−−−→ {(c, α), (b, β), (a, γ)}
(a,α)−−−→ {(a, α), (b, β), (c, γ)}.

This example shows that swapping unstable matches can lead to a cycle, and therefore may fail to
terminate with a stable matching. The key idea that leads to breaking these cycles in the Gale-
Shapley algorithm is the notion of a temporary matching, i.e., job offers. Initially, every applicant
is unmatched, and we allow the job openings to make job offers. An applicant is allowed to renege
on any temporary match (an offer they agreed to) and jump to any new offer they prefer. Similarly,

3For notational clarity, we use English lowercase to denote applicants and Greek lowercase to denote jobs.
4The stable matching problem is sometimes presented in the context of marrying n men and women. We choose

to present the applicant-job opening variant instead for several reasons. First, love is love, so the marriage example is
somewhat dated. Second, we are not aware of any real-world applications of stable matching algorithms to marrying
couples, contrary to the case of jobs. Finally, this presentation decision better highlights the asymmetry between
the two parties, which is relevant when we analyze structural properties of the outputted matching.

5Credit goes to Donald Knuth, by way of [Eri24], for this example.

13

if a job opening makes an offer to an applicant which is later reneged, they can make new offers
to unmatched applicants. We are now ready to state the Gale-Shapley algorithm.

Algorithm 7: StableMatching({Aa}a∈[n], {Jα}α∈[n])
1 Input: Applicant preference lists {Aa}a∈[n] which are permutations of [n] ranking the n job
openings (with most-preferred jobs first), and job opening preference lists {Jα}i∈[n] which are
permutations of [n] ranking the n applicants (with most-preferred applicants first)

2 M ← ∅ // Maintains current list of matched pairs.
3 iα ← 1 for all α ∈ [n] // Each job α ∈ [n] has pointer iα to its favorite applicant who has not yet reneged.
4 while ∃α ∈ [n] with no (a, α) ∈M do
5 a← Jα[iα] // Unmatched job α makes an offer to its current favorite applicant Jα[iα]
6 if ∃β = Aa[j] such that (a, β) ∈M and j > i where α = Aa[i] then
7 M ←M \ {(a, β)} ∪ {(a, α)} // a reneges and temporarily accepts the new offer.
8 iβ ← iβ + 1 // a has rejected the old offer from β.

9 end
10 else if ∃β = Aa[j] such that (a, β) ∈M and j < i where α = Aa[i] then
11 iα ← iα + 1 // a has rejected the new offer from α.

12 end
13 else
14 M ←M ∪ {(α, a)} // a temporarily accepts the new offer.
15 end
16 end
17 return M

There is a fair amount of notation in Algorithm 7, but it is quite straightforward to state what the
algorithm is doing. The algorithm terminates whenever all job openings have a matched applicant.

Before termination, in Line 4, the algorithm repeatedly asks any unmatched job opening α to make
an offer to its favorite applicant a = Jα[iα] who has not yet reneged on, or rejected, an offer from
α. If applicant a is unmatched, they temporarily accept the offer from α on Line 14. Otherwise,
applicant a has already temporarily accepted an offer from some other job opening β. If a prefers
β to its new offer from α, then it rejects the new offer and iα increments due to the rejection
(Line 11). Otherwise, a reneges on its old offer from β, and iβ increments (Lines 7 to 8).

Correctness. Algorithm 7 is intuitive, but it is unclear that it yields a perfect matching, let alone
a stable one. Fortunately, we can establish several invariants that help us prove both facts.

First, we prove that when Algorithm 7 terminates, M is a perfect matching (i.e., all applicants
and jobs are matched). Observe that after an applicant is offered a job for the first time, that
applicant will participate in the maintained matching M for the rest of the algorithm, because
all that can happen henceforth is the applicant switches to a preferred offer. Thus, if M is not
perfect at termination, there was some applicant a who was never offered a job. However, this
means there is also an unmatched job α. Because α has not offered a a job, the algorithm has not
terminated, because iα has not yet reached a on α’s preference list, so the loop in Lines 4 to 16
should continue. This contradicts our assumption that the algorithm terminated.

Next, we prove that the matching returned by Algorithm 7 is stable. Suppose for contradiction
that (a, α) and (b, β) are both pairs in the final matching, but a prefers β to α, and β prefers a to
b. The former fact implies that a never received an offer from β, because otherwise a would have
reneged on α. However, β could not make an offer to b before making an offer to a, as a appears
earlier on β’s preference list. This is a contradiction, so there can be no unstable pairs.

Runtime. We now need to address the elephant in the room: how do we know Algorithm 7
terminates at all? To prove that it does, we establish a notion of progress to prove that the loop
from Line 4 to 16 can only run O(n2) times before the algorithm must terminate.

The key observation is that every run of the while loop, involving an unmatched job α and its
current favorite applicant a, either ends with an offer being rejected (Lines 7 or 11), or a new
matching being added to M (Line 14). Thus, in each loop, either one of the pointers {iα}α∈[n]
increments (due to a rejected offer), or the maintained matching M permanently grows in size.

14

The former type of progress can only happen n2 times, since each pointer lies in the range 1 to n.
Similarly, the latter type of progress can only happen n times, since |M | ≤ n. Additionally, note
that no job opening can ever exhaust its entire preference list without the algorithm terminating,
because once an opening has been rejected by every applicant, every applicant has accepted at
least one job offer. Thus, we have shown that the while loop can only occur n2 +n = O(n2) times.

To implement each run of the loop inO(1) time, we maintain a Queue of all unmatched job openings,
and remove an arbitrary such unmatched job opening from the Queue in each loop beginning on
Line 4. Moreover, we can spend O(n2) time preprocessing the preference lists to also store inverse
lookup lists (so that for a given applicant a ∈ [n] and job opening α ∈ [n], we can look up the
index i ∈ [n] such that Jα[i] = a in O(1) time, as required by Lines 6 and 10).

With these modifications, the overall stable matching algorithm runs in O(n2) time. This is a
linear-time implementation in the size of the input, because it takes O(n2) time to specify all
preference lists. Moreover, we remark that there are worst-case examples of preference lists and
tiebreaking procedures to select unmatched jobs in Line 4 that can cause Algorithm 7 to take
Ω(n2) steps. The easiest such example is if all jobs agree on a preference ordering of applicants,
and all applicants agree on a preference ordering of jobs. If all jobs take turns making offers to the
globally best applicant in reverse order from the applicant’s preference, and the applicant reneges
on all offers except its best, this takes n offers to remove one applicant from the pool. Repeating
for each applicant in turn can result in as many as n(n+1)

2 = Ω(n2) offers being made.

Structural properties. One interesting feature of the Gale-Shapley algorithm is that it works no
matter how we select the unmatched job α to initiate a loop of Lines 4 to 16. This may seem like
a bug: surely our algorithm details are underspecified? Incredibly, it turns out that Algorithm 7
always returns the same stable matching, regardless of how we implement Line 4!

There is a very fundamental reason why this is the case, which we summarize as follows.

Lemma 6. Let M be the matching output by Algorithm 7, using any choice in the selection of an
unmatched job opening in Line 4. Then the following hold.

• For every job opening α ∈ [n], suppose (a, α) ∈M . Then, if M ′ is any stable matching with
respect to the same preference lists, if (b, α) ∈M ′, then α prefers to a to b.

• For every applicant a ∈ [n], suppose (a, α) ∈ M . Then, if M ′ is any stable matching with
respect to the same preference lists, if (a, β) ∈M ′, then a prefers to β to α.

Lemma 6 has a clean interpretation. Say that an applicant a is feasible for a job opening α if
(a, α) ∈ M for some stable matching M , and say that α is feasible for a similarly. Then the
stable matching assigned by Algorithm 7 gives each job their best feasible applicant, and gives
each applicant their worst feasible job. This also implies that there is only one possible matching
that Algorithm 7 can output, because each job opening has a unique best feasible applicant.

Proof of Lemma 6. Suppose for the sake of contradiction that M produced by Algorithm 7 does
not pair up (a, α), where a is the best feasible applicant for α. Because α ends up with some
feasible applicant, it must have made an offer to a at some point. Thus, a rejected α in favor of
another job, β. Without loss of generality, suppose it is the first time this is the case.

Because a is feasible for α, there is some stable matchingM ′ where (a, α) and (b, β) are paired. We
claim that (a, β) is an unstable pair, contradicting that M ′ is stable. We have already seen that a
prefers β to α, as it made this choice in obtaining the matching M . Moreover, in the execution of
Algorithm 7, β could not have yet made an offer to b, because b is feasible for β and we assumed
(a, α) was the first instance of a best feasible rejection. Therefore, β prefers a (which it made an
offer to) over b as well, concluding our proof that M ′ is in fact unstable if a ever rejects α.

Conversely, suppose for the sake of contradiction that M produced by Algorithm 7 pairs up (a, α),
where α is not the worst feasible job for a. Then there is some stable matching M ′ where a is
paired up with β, that is disliked compared to α. Moreover, suppose that (b, α) ∈ M ′. Then we
claim α prefers a to b: we already know from earlier that a is the best feasible applicant for α, and
b is some feasible applicant. It follows that (a, α) is unstable in M ′, a contradiction.

15

Further reading
For more on Sections 2.1 and 2.3, see Chapter 15.2, [CLRS22].

For more on Section 2.2, see Chapter 4.1, [Eri24].

For more on Section 3.1, see Chapter 13, [Rou22].

For more on Section 3.2, see Chapter 4.2, [KT05].

For more on Section 3.3, see Chapter 15.1, [CLRS22] or Chapter 4.2, [Eri24] or Chapter 4.1, [KT05].

For more on Section 4.1, see Chapter 21, [CLRS22] or Chapter 7, [Eri24] or Chapter 4.5, [KT05]
or Chapter 15, [Rou22].

For more on Section 4.2, see Chapter E, [Eri24].

For more on Section 5, see Chapter 25.2, [CLRS22] or Chapter 4.5, [Eri24] or Chapter 1.1, [KT05].

References
[Bor26] Otakar Borůvka. O jistém problému minimálním. Prće Mor. Přírodověd. Spol. V Brně

III, 3:37–58, 1926.

[Cha00] Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type
complexity. J. ACM, 47(6):1028–1047, 2000.

[CLRS22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Fourth Edition. The MIT Press, 2022.

[Eri24] Jeff Erickson. Algorithms. 2024.

[GS62] David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–14, 1962.

[JBK56] Jr. Joseph B.K̃ruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[KKT95] David R. Karger, Philip N. Klein, and Robert Endre Tarjan. A randomized linear-time
algorithm to find minimum spanning trees. J. ACM, 42(2):321–328, 1995.

[KT05] Jon Kleinberg and Éva Tardos. Algorithm Design. 2005.

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm.
J. ACM, 49(1):16–34, 2002.

[Pri57] Robert C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36(6):1389–1401, 1957.

[Rou22] Tim Roughgarden. Algorithms Illuminated. Soundlikeyourself Publishing, 2022.

16

	Introduction
	Rearrangement
	Fractional unbounded knapsack
	Total completion time
	Fractional 0-1 knapsack

	Exchange arguments
	Weighted total completion time
	Minimizing lateness
	Scheduling revisited

	Matroids
	Minimum spanning tree
	Basis selection

	Stable matching

